For \(1\leq j\leq n\) the inclusion of \(\RNr\) as the \(j\)-th coordinate axis of \(\RNrSpc{n}\) is given by the function
\[\CoordInclsn{j}\from \RNr\longrightarrow \RNrSpc{n},\quad \CoordInclsnOf{j}{x}\DefEq \left[\begin{array}{c} 0\\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] [x] = \left[ \begin{array}{c} 0\\ \vdots \\ x \\ \vdots \\ 0\end{array}\right]\]where the \(1\) and \(x\) sit in position \(j\).