Exercises: Linear Transformations II - Invertible Maps
The linear maps \(L\) and \(T\) below are described in standard coordinates.
\[ \begin{array}{rl} L\from \RNrSpc{4} \longrightarrow \RNrSpc{3} &\quad L(x,y,z,t)= (-t+x,y+x,z-x) \\ T\from \RNrSpc{3} \longrightarrow \RNrSpc{4} &\quad T(x,y,z) = (x+z,y,-x,-z+y) \end{array} \]Answer the subsequent questions
Let \(\EuScript{B}=(\Vect{b}_1,\Vect{b}_2,\Vect{b}_3)\) and \(\EuScript{D}=(\Vect{d}_1,\Vect{d}_2,\Vect{d}_3)\) be the ordered bases of \(\RNrSpc{3}\) with
\[ \begin{array}{rclrclrcl} \Vect{b}_1 & = & (1,0,0), &\quad \Vect{b}_2 & = & (-1,-1,1), &\quad \Vect{b}_3 & = & (0,0,1) \\ \Vect{d}_1 & = & (1,0,1), &\quad \Vect{d}_2 & = & (-1,-1,0), &\quad \Vect{d}_3 & = & (0,-1,-1) \end{array} \]Further, let \(L\from \RNrSpc{3} \to \RNrSpc{3}\) be the linear map which is represented by the matrix
\[ \Mtrx{A}_{\EuScript{B}\EuScript{D}} = \left[ \begin{array}{rrr} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array} \right] \]Find the matrix \(\Mtrx{A}_{\EuScript{D}\EuScript{B}}\) representing \(L^{-1}\) with respect to the bases \(\EuScript{B}\) for the domain and \(\EuScript{D}\) for the target.
Find the \(\EuScript{D}\)-coordinates of \(L^{-1}(a,b,c)_{\EuScript{B}}\), where \((a,b,c)_{\EuScript{B}}\) is arbitrary in \(\RNrSpc{3}\).
Find the matrix \(\Mtrx{A}\) representing \(L^{-1}\) with respect to the standard basis of \(\RNrSpc{3}\).
If \(\Vect{x}_{\EuScript{S}}=(x,y,z)\), express \(L^{-1}(\Vect{x})\) in standard coordinates.
For each of the statements below determine if it is true or false.
Given an isomorphism \(L\from V\to W\), there are always vectors \(\Vect{x}\neq \Vect{0}\) in \(V\) with \(L(\Vect{x})=\Vect{0}\).
Given an isomorphism \(L\from V\to W\), the vector equation \(L(\Vect{x}) = \Vect{0}\) has exactly one solution, namely \(\Vect{x} = \Vect{0}\).
Given an isomorphism \(L\from V\to W\) and a vector \(\Vect{y}\) in \(W\), there is a unique \(\Vect{x}\) in \(V\) with \(L(\Vect{x}) = \Vect{y}\).
Given an isomorphism \(L\from V\to W\) and a vector \(\Vect{y}\) in \(W\), there are always infinitely many \(\Vect{x}\) in \(V\) with \(L(\Vect{x}) = \Vect{y}\).