Matrix Equations and Linear Equations: Exercises

Problem 1

Express the following system of linear equations as a matrix equation.

\[ \begin{array}{rcrcrcrcr} 4u & + & x & - & 2y & + & 10z & = & 4 \\ -2u & + & 3x & -& 4y & + & 5z & = & 1 \\ u & - & x & + & 3y & - & 5z & = & -6 \end{array} \]
Problem 2

Express the systems of linear equations below as matrix equations. Then find the solutions by using the inverse of the coefficient matrix.

\[ \begin{array}{rcrcrcr} x & - & 2y & + & 2z & = & 1 \\ 2x & - & 3y & + & 6z & = & 4 \\ x & + & y & + & 7z & = & -2 \end{array} \quad \text{and} \quad \begin{array}{rcrcrcr} x & - & 2y & + & 2z & = & 3 \\ 2x & - & 3y & + & 6z & = & 1 \\ x & + & y & + & 7z & = & 1 \end{array} \]
Problem 3

Solve the matrix equation \(\Mtrx{A}\Mtrx{X} = \Mtrx{B}\) if

\[ A = \left[ \begin{array}{rrr} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -1 & 2 & 2 \end{array}\right], \quad B = \left[ \begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right], \quad X = \left[ \begin{array}{r} x \\ y \\ z \end{array}\right] \]