Gram-Schmidt Orthonormalization: Example

Example

You are given the vectors \(\Vect{a}\), \(\Vect{b}\), and \(\Vect{c}\) in \(\RNrSpc{3}\) with

\(\Vect{a}\)\(=\)\((1,1,1)\)
\(\Vect{b}\)\(=\)\((0,-1,1)\)
\(\Vect{c}\)\(=\)\((1,1,0)\)

Verify that these vectors form a basis of \(\RNrSpc{3}\), then orthonormalize them.

Solution

We begin by checking that the given vectors are linearly independent. we use the determinant.

\[ \det \left[ \begin{array}{rrr} 1 & 0 & 1 \\ 1 & -1& 1 \\ 1 & 1 & 0 \end{array} \right] = \det \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 1 &-1 & 0 \\ 1 & 1 &-1 \end{array} \right] = 1 \neq 0 \]

So the vectors are linearly independent. Then we know that three linearly independent vectors in the 3-dimensional space \(\RNrSpc{3}\) always form a basis. This answers the first part of the problem.

We use the Gram-Schmidt orthonormalization method to turn the given basis of \(\RNrSpc{3}\) into an orthonormal basis of \(\RNrSpc{3}\).

\(\Vect{u}\)\(\DefEq \)\(\frac{\Vect{a}}{ \Norm{ \Vect{a} } }\)
\(\)\(=\)\(\frac{1}{\sqrt{3}}\cdot (1,1,1)\)

To orthonormalize \(\Vect{b}\) with respect to \(\Vect{u}\), we encounter the expression

\(\left[ \DotPr{ (0,-1,1) }{ \left( \tfrac{1}{\sqrt{3}}\cdot (1,1,1) \right) }\right]\cdot \tfrac{1}{\sqrt{3}}\cdot (1,1,1)\)\(=\)\(0\)

So we find

\(\Vect{v}\)\(=\)\(\frac{ \Vect{b} }{ \Norm{ \Vect{b} } }\)
\(\)\(=\)\(\frac{1}{ \sqrt{2} }\cdot (0,-1,1)\)

To orthonormalize \(\Vect{c}\) with respect to \(\Vect{u}\) and \(\Vect{v}\) we encounter the expressions

\(\left[ \DotPr{ (1,1,0) }{ \left( \tfrac{1}{\sqrt{3}}\cdot (1,1,1) \right) }\right]\cdot \tfrac{1}{\sqrt{3}}\cdot (1,1,1)\)\(=\)\(\frac{2}{3}\cdot (1,1,1)\)
\(\left[ \DotPr{ (1,1,0) }{ \left( \tfrac{1}{\sqrt{2}}\cdot (0,-1,1) \right) }\right]\cdot \tfrac{1}{\sqrt{2}}\cdot (0,-1,1)\)\(=\)\(-\frac{1}{2}\cdot (0,-1,1)\)

Therefore the orthonormalization of \(\Vect{c}\) with respect to \(\Vect{u}\) and \(\Vect{v}\) is

\(\Vect{w}\)\(\DefEq \)\(\frac{ (1,1,0) - \tfrac{2}{3}\cdot (1,1,1) + \tfrac{1}{2}\cdot (0,-1,1) }{ \Norm{ (1,1,0) - \tfrac{2}{3}\cdot (1,1,1) + \tfrac{1}{2}\cdot (0,-1,1) } }\)
\(\)\(=\)\(\frac{ \tfrac{1}{6}\cdot (2,-1,-1) }{ \Norm{ \tfrac{1}{6}\cdot (2,-1,-1) } }\)
\(\)\(=\)\(\frac{1}{\sqrt{6}}\cdot (2,-1,-1)\)

Thus \(\Vect{u}\), \(\Vect{v}\), and \(\Vect{w}\) as found above form the Gram-Schmidt orthonormalization of \(\Vect{a}\), \(\Vect{b}\), and \(\Vect{c}\).