Linear Independence by Rank: Examples

Example

Determine if the vectors

\(\Vect{a}\)\(=\)\((1,2,3,0)\)
\(\Vect{b}\)\(=\)\((1,1,2,2)\)
\(\Vect{c}\)\(=\)\((3,1,4,1)\)
\(\Vect{d}\)\(=\)\((2,1,3,0)\)

of \(\RNrSpc{4}\) are linearly independent.

Solution

We form the matrix

\[ \Mtrx{A} = \left[ \begin{array}{cccc} 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 4 & 3 \\ 0 & 2 & 1 & 0 \end{array} \right] \]

which has the given vectors as its column vectors. The RREF of \(\Mtrx{A}\) is

\[ \begin{array}{rrrr} 1 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & -1/3 \\ 0 & 0 & 1 & 2/3 \\ 0 & 0 & 0 & 0 \end{array} \]

So \( \Rnk{\Mtrx{A}} = 3 < 4 \). Therefore, the vectors are linearly dependent.

Example

Determine if the vectors

\(\Vect{w}\)\(=\)\((3,1,1,-1,2,6,1,1)\)
\(\Vect{x}\)\(=\)\((0,4,9,6,2,6,3,-2)\)
\(\Vect{y}\)\(=\)\((2,0,0,2,3,1,-1,0)\)
\(\Vect{z}\)\(=\)\((1,1,-2,-1,3,1,1,4)\)

of \(\RNrSpc{8}\) are linearly independent.

Solution

If we use the given vectors as the column vectors of a matrix and determine its RREF, we find

\[ \Mtrx{A} = \left[ \begin{array}{rrrr} 3 & 0 & 2 & 1 \\ 1 & 4 & 0 & 1 \\ 1 & 9 & 0 & -2 \\ -1 & 6 & 2 & -1 \\ 2 & 2 & 3 & 3 \\ 6 & 6 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -2 & 0 & 4 \end{array} \right]\qquad \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \]

Thus \(\Rnk{\Mtrx{A}} = 4\), implying that its columns are linearly independent. So \(\Vect{w},\Vect{x},\Vect{y},\Vect{z}\) are linearly independent.