Example: Projection onto a Coordinate Axis

Example

Recall: the projection of \(\RNrSpc{m}\) onto the \(i\)-th coordinate is the function

\[\PrjctnOnto{i}\from \RNrSpc{m} \longrightarrow \RNr,\qquad \PrjctnOntoOfCoord{i}{(x_1,\dots ,x_m)}=x_i\]

Show directly that \(\PrjctnOnto{i}\) is a linear function.

Proof

To see why \(\PrjctnOnto{i}\from \RNrSpc{m}\to \RNr\) is linear, we check that it commutes with vector addition and with scalar multiplication

\(\PrjctnOntoOf{i}{(x_1,\dots ,x_m)+(y_1,\dots ,y_m)}\)\(= \)\(\PrjctnOntoOfCoord{i}{(x_1+y_1,\dots ,x_m+y_m)}\)
\(\)\(= \)\(x_i+y_i\)
\(\)\(= \)\(\PrjctnOntoOfCoord{i}{(x_1,\dots ,x_m)} + \PrjctnOntoOfCoord{i}{(y_1,\dots ,y_m)}\)
\(\PrjctnOntoOf{i}{t\cdot (x_1,\dots ,x_m)}\)\(=\)\(\PrjctnOntoOfCoord{i}{(tx_1,\dots ,tx_m)}\)
\(\)\(=\)\(tx_i\)
\(\)\(=\)\(t\cdot \PrjctnOntoOfCoord{i}{(x_1,\dots ,x_m)}\)

Example

List all coordinate projections of \(\RNrSpc{3}\), and find their effect on a vector \((x,y,z)\).

Solution

\(\RNrSpc{3}\) has three projection functions, namely \(\PrjctnOnto{1}\), \(\PrjctnOnto{2}\), and \(\PrjctnOnto{3}\). The effect of these projections on \(\Vect{x}=(x,y,z)\) is given by

\(\PrjctnOntoOfCoord{1}{(x,y,z)}\)\(=\)\(x\)
\(\PrjctnOntoOfCoord{2}{(x,y,z)}\)\(=\)\(y\)
\(\PrjctnOntoOfCoord{3}{(x,y,z)}\)\(=\)\(z\)

Example

Find the effect of the three coordinate projections of \(\RNrSpc{3}\) on the vector \(\Vect{x}=(2,5,7)\).

Solution

From the previous problem we know that \(\RNrSpc{3}\) has three coordinate projections, namely

\(\PrjctnOntoOfCoord{1}{(x,y,z)}\)\(=\)\(x\)
\(\PrjctnOntoOfCoord{2}{(x,y,z)}\)\(=\)\(y\)
\(\PrjctnOntoOfCoord{3}{(x,y,z)}\)\(=\)\(z\)

Therefore,

\(\PrjctnOntoOfCoord{1}{(2,5,7)}\)\(=\)\(2\)
\(\PrjctnOntoOfCoord{2}{(2,5,7)}\)\(=\)\(5\)
\(\PrjctnOntoOfCoord{3}{(2,5,7)}\)\(=\)\(7\)