Consider first the case where \(\LinMap{L}\) is invertible; i.e. there is a linear map \(\LinMap{M}\from \VSpc{W}\to \VSpc{V}\) with
\[\LinMap{M}\Comp \LinMap{L} = \IdMapOn{V} \quad\text{and}\quad \LinMap{L}\Comp \LinMap{M} = \IdMapOn{W}\]
Let \(\LinMapMtrxxOnBss{L}{B}{A}\) and \(\LinMapMtrxxOnBss{M}{A}{B}\) denote the representing matrices. Then
\(\LinMapMtrxxOnBss{M}{A}{B}\cdot \LinMapMtrxxOnBss{L}{B}{A}\) | \(=\) | \(\LinMapMtrxxOnBss{M\Comp L}{A}{A} = \IdMtrx{}\) |
\(\LinMapMtrxxOnBss{L}{B}{A}\cdot \LinMapMtrxxOnBss{M}{A}{B}\) | \(=\) | \(\LinMapMtrxxOnBss{L\Comp M}{B}{B} = \IdMtrx{}\) |
This implies that both \(\LinMapMtrxxOnBss{L}{B}{A}\) and \(\LinMapMtrxxOnBss{M}{A}{B}\) are square shaped of the same size, and are inverse to each other; i.e.
\(\LinMapMtrxxOnBss{L^{-1}}{A}{B}\) | \(=\) | \(\left( \LinMapMtrxxOnBss{L}{B}{A}\right)^{-1}\) |
Next consider the case where \(\Mtrx{A}\DefEq \LinMapMtrxxOnBss{L}{B}{A}\) is invertible. Then \(\Mtrx{B}\DefEq \Mtrx{A}^{-1}\) represents a linear function \(\LinMap{M}\from \VSpc{W}\to \VSpc{V}\). To see that \(\LinMap{M}\) does, indeed, reverse the transformation effect of \(\LinMap{L}\), we compute:
\(\CoordVect{(M\Comp L)(\Vect{x})}{\EuScript{A}}\) | \(=\) | \(\Mtrx{B}\Mtrx{A} \CoordVect{\Vect{x}}{\EuScript{A}} = \CoordVect{\Vect{x}}{\EuScript{A}}\) |
\(\CoordVect{(L\Comp M)(\Vect{y})}{\EuScript{B}}\) | \(=\) | \(\Mtrx{A}\Mtrx{B} \CoordVect{\Vect{y}}{\EuScript{B}} = \CoordVect{\Vect{y}}{\EuScript{B}}\) |
Thus \(\LinMap{L}\) is invertible, with inverse \(\LinMap{M}\). – This completes the proof.