PropositionLinear map by values on a basis

Let \(V\) and \(W\) be subspaces of \(\RNrSpc{k}\). Given a basis \(\EuScript{A}=\Set{ \Vect{a}_1,\dots ,\Vect{a}_n}\) of \(V\) and arbitrary vectors \(\Vect{z}_1\), ... , \(\Vect{z}_n\) in \(W\), there is exactly one linear transformation \(L\from V\to W\) with

\[L(\Vect{a}_1)=\Vect{z}_1\ ,\quad \dots \ ,\quad L(\Vect{a}_n)=\Vect{z}_n\]

Proof

We begin by constructing a function \(L\from V\to W\) satisfying

\[L(\Vect{a}_1)=\Vect{z}_1,\quad \dots ,\quad L(\Vect{a}_n)=\Vect{z}_n\]

Indeed, we know that every vector \(\Vect{x}\in V\) has a unique expression as a linear combination

\(\Vect{x}\)\(=\)\(x_1 \Vect{a}_1 + \cdots + x_n \Vect{a}_n\)

Therefore, setting \(L(\Vect{x}) \DefEq x_1 L(\Vect{a}_1) + \cdots + x_n L(\Vect{a}_n)\) is a function from \(V\) to \(W\). We need to verify that \(L\) is linear:

Verification of the additivity property: With \(\Vect{x}=x_1 \Vect{a}_1+\cdots + x_n \Vect{a}_n\) and \(\Vect{y}=y_1 \Vect{a}_1+\cdots + y_n \Vect{a}_n\), we find

\(L(\Vect{x}+\Vect{y})\)\(=\)\(L\left( (x_1 \Vect{a}_1 +\cdots x_n \Vect{a}_n) + (y_1 \Vect{a}_1+\cdots + y_n \Vect{a}_n) \right)\)
\(\)\(=\)\(L\left( (x_1+y_1)\Vect{a}_1 + \cdots + (x_n+y_n) \Vect{a}_n \right)\)
\(\)\(=\)\((x_1+y_1)L(\Vect{a}_1) + \cdots (x_n+y_n) L(\Vect{a}_n)\)
\(\)\(=\)\(\left( x_1L(\Vect{a}_1) +\cdots + x_n L(\Vect{a}_n)\right)\ +\ \left(y_1L(\Vect{a}_1) + \cdots + y_nL(\Vect{a}_n)\right)\)
\(\)\(=\)\(L(\Vect{x})\ +\ L(\Vect{y})\)

Verification that \(L\) commutes with scalar multiplication. With \(\Vect{x} = x_1 \Vect{a}_1 + \cdots x_n \Vect{a}_n\in V\) and \(t\in \RNr\) we find

\(L(t \Vect{x})\)\(=\)\(L\left( t(x_1 \Vect{a}_1 +\cdots + x_n \Vect{a}_n)\right)\)
\(\)\(=\)\(L\left( (tx_1)\Vect{a}_1 + \cdots + (tx_n)\Vect{a}_n\right)\)
\(\)\(=\)\((tx_1)L(\Vect{a}_1) + \cdots + (tx_n)L(\Vect{a}_n)\)
\(\)\(=\)\(t\left( x_1L(\Vect{a}_1) +\cdots + x_nL(\Vect{a}_n)\right)\)
\(\)\(=\)\(t L(\Vect{x})\)

It remains to show that the function \(L\) we just constructed is the only linear function \(V\to W\) with

\[L(\Vect{a}_1)=\Vect{z}_1,\quad \dots ,\quad L(\Vect{a}_n)=\Vect{z}_n\]

So suppose \(M\from V\to W\) is linear and satisfies

\[M(\Vect{a}_1)=\Vect{z}_1,\quad \dots ,\quad M(\Vect{a}_n)=\Vect{z}_n\]

We need to show that \(L=M\). For an arbitrary vector \(\Vect{x}=x_1 \Vect{a}_1 + \cdots + x_n \Vect{a}_n\) we find

\(L(\Vect{x})\)\(=\)\(x_1 L(\Vect{a}_1) + \cdots + x_n L(\Vect{a}_n)\)
\(\)\(=\)\(x_1 \Vect{z}_1 + \cdots + x_n \Vect{z}_n\)
\(\)\(=\)\(x_1 M(\Vect{a}_1) + \cdots + x_n M(\Vect{a}_n)\)
\(\)\(=\)\(M(x_1 \Vect{a}_1 + \cdots + x_n \Vect{a}_n)\)
\(\)\(=\)\(M(\Vect{x})\)

This means that \(L=M\), and the proof is complete.