Suppose the coefficient matrix \(\Mtrx{A}\) of the system of \(n\) linear equations in \(n\) variables
\[ \begin{array}{rcccrcr} \colorbox{lightgreen}{$a_{11}$} {\color{red} x_1} & + & \cdots & + & \colorbox{lightgreen}{$a_{1n}$} {\color{red} x_n} & = & c_1 \\ \vdots\ \ \ & & & & \vdots\ \ \ & & \vdots\ \ \\ \colorbox{lightgreen}{$a_{n1}$} {\color{red} x_1} & + & \cdots & + & \colorbox{lightgreen}{$a_{nn}$} {\color{red} x_n} & = & c_n \end{array} \]is invertible. Then this system has the unique solution
\[ {\color{red}\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}}\ =\ A^{-1} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \]