The orthogonal projection of \(\RNrSpc{n}\) onto the hyperspace perpendicular to a nonzero vector \(\Vect{a}\) is a linear transformation.
The orthogonal projection of \(\RNrSpc{n}\) onto the hyperspace perpendicular to a nonzero vector \(\Vect{a}\) is a linear transformation.
First we need to show that \(P\) commutes with vector addition; that is:
\[P(\Vect{x}+\Vect{y}) = P(\Vect{x}) + P(\Vect{y})\]So we compute:
\(P(\Vect{x}+\Vect{y})\) | \(=\) | \(\Vect{x} + \Vect{y}\ -\ \dfrac{ \DotPr{\Vect{a}}{(\Vect{x}+\Vect{y})} }{ \DotPr{\Vect{a}}{\Vect{c}} } \cdot \Vect{a}\) |
\(\) | \(= \) | \(\Vect{x} + \Vect{y}\ -\ \dfrac{ \DotPr{\Vect{a}}{\Vect{x}}+ \DotPr{\Vect{a}}{\Vect{y}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\) |
\(\) | \(= \) | \(\left( \Vect{x} \ -\ \dfrac{ \DotPr{\Vect{a}}{\Vect{x}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\right) \ +\ \left( \Vect{y}\ -\ \dfrac{ \DotPr{\Vect{a}}{\Vect{y}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\right)\) |
\(\) | \(=\) | \(P(\Vect{x})\ +\ P(\Vect{y})\) |
Next we need to show that \(P\) commutes with scalar multiplication; that is
\[P(t\cdot \Vect{x}) = t\cdot P(\Vect{x})\]So we compute
\(P(t\cdot \Vect{x})\) | \(=\) | \(t\cdot \Vect{x} - \dfrac{ \DotPr{\Vect{a}}{(t\cdot \Vect{x})} }{ \DotPr{ \Vect{a} }{ \Vect{a} } }\cdot \Vect{a}\) |
\(\) | \(= \) | \(t\cdot \Vect{x} - \dfrac{ t\cdot (\DotPr{\Vect{a}}{\Vect{x}}) }{ \DotPr{ \Vect{a} }{ \Vect{a} } }\cdot \Vect{a}\) |
\(\) | \(=\) | \(t\cdot P(\Vect{x})\) |
This proves that an orthogonal projection is a linear transformation.