The orthogonal reflection of \(\RNrSpc{n}\) about the hyperspace perpendicular to a nonzero vector \(\Vect{a}\) is a linear transformation.
The orthogonal reflection of \(\RNrSpc{n}\) about the hyperspace perpendicular to a nonzero vector \(\Vect{a}\) is a linear transformation.
The argument is entirely parallel to the proof that orthogonal projections are linear transformations:
First we need to show that \(M\) commutes with vector addition; that is:
\[M(\Vect{x}+\Vect{y}) = M(\Vect{x}) + M(\Vect{y})\]So we compute:
\(M(\Vect{x}+\Vect{y})\) | \(=\) | \(\Vect{x} + \Vect{y}\ -\ 2\cdot \dfrac{ \DotPr{\Vect{a}}{(\Vect{x}+\Vect{y})} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\) |
\(\) | \(= \) | \(\Vect{x} + \Vect{y}\ -\ 2\cdot\dfrac{ \DotPr{\Vect{a}}{\Vect{x}}+ \DotPr{\Vect{a}}{\Vect{y}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\) |
\(\) | \(= \) | \(\left( \Vect{x} \ -\ 2\cdot\dfrac{ \DotPr{\Vect{a}}{\Vect{x}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\right) \ +\ \left( \Vect{y}\ -\ 2\cdot \dfrac{ \DotPr{\Vect{a}}{\Vect{y}} }{ \DotPr{\Vect{a}}{\Vect{a}} } \cdot \Vect{a}\right)\) |
\(\) | \(=\) | \(M(\Vect{x})\ +\ M(\Vect{y})\) |
Next we need to show that \(M\) commutes with scalar multiplication; that is
\[M(t\cdot \Vect{x}) = t\cdot M(\Vect{x})\]So we compute
\(M(t\cdot \Vect{x})\) | \(=\) | \(t\cdot \Vect{x} - 2\cdot \dfrac{ \DotPr{\Vect{a}}{(t\cdot \Vect{x})} }{ \DotPr{ \Vect{a} }{ \Vect{a} } }\cdot \Vect{a}\) |
\(\) | \(= \) | \(t\cdot \Vect{x} - 2\cdot \dfrac{ t\cdot (\DotPr{\Vect{a}}{\Vect{x}}) }{ \DotPr{ \Vect{a} }{ \Vect{a} } }\cdot \Vect{a}\) |
\(\) | \(=\) | \(t\cdot M(\Vect{x})\) |
This proves that an orthogonal projection is a linear transformation.